Research & Innovation
Currently, we are witnessing the rise of new technology-driven trends such as the Internet of Things, Web of Things, and Factories of the Future that are accompanied by an increasingly heterogeneous landscape of small, embedded, and highly modularized devices and applications, multitudes of manufactures and developers, and pervasion of things within all areas of life. At the same time, we can observe increasing complexity of the task of integrating subsets of heterogeneous components into applications that fulfil certain needs by providing value-added functionality beyond the pure sum of their components. Enabling integration in these multi-stakeholder scenarios requires new architectural approaches for adapting components, while building on existing technologies and thus ensuring broader acceptance. To this end, we present our approach on adaptation, that introduces adaptable interfaces, interactions, and processing for Linked Data Platform components. In addition, we provide an implementation of our approach that enables the adaptation of components via a thin meta-layer defined on top of the components' domain data and functionality. Finally, we evaluate our implementation by using a benchmark environment and adapting interfaces, interactions, and processing of the involved components at runtime.