
Living with Linked Data
Usage in a "live" production setting

About NXP Semiconductors

‣ Net Revenue: $4.82 billion (2013)

‣ Established: 2006 (former division of Philips)

‣ 55+ years of experience in semiconductors

‣ Headquarters: Eindhoven, The Netherlands

‣ Businesses
– High Performance Mixed Signal: Automotive, Identification, Infrastructure

& Industrial, Portable & Computing
– Standard Products

‣ http://www.nxp.com

http://www.nxp.com/�

About Semaku

‣ Established: 2013

‣ Headquarters: Eindhoven, The Netherlands

‣ Consultancy services and software products

‣ Areas of expertise
– Product Information Management
– Linked Data
– Content Strategy

‣ http://semaku.com

‣ info@semaku.com

http://semaku.com/�
mailto:info@semaku.com�

Linked Data at NXP
So far, so good…
‣ Canonical data source for marketing master data

– Provide the linking data
– Unambiguous identifiers

‣ Using stored SPARQL SELECT queries to expose REST
APIs

– Results in tabular XML, JSON or CSV/TSV format
– Easy to manage queries
– Extremely quick to set up new APIs (15 – 30 mins)

‣ Able to answer previously unanswerable questions

‣ Minimal investment compared to traditional BW/BI projects

But we want more

‣ Faster, faster, more, more…
– Daily RDF dumps not frequent enough
– Do not contain all the data

‣ Phase out legacy systems
– Reduce maintenance effort/costs
– Manage data natively as RDF

PRODUCT
LIFECYCLE
MANAGEMENT

Adding a new data source

What is product lifecycle management

‣ “product lifecycle management (PLM) is the process of
managing the entire lifecycle of a product … PLM
integrates people, data, processes and business systems
and provides a product information backbone for
companies and their extended enterprise.” – Wikipedia

‣ Uses same basic EAV model that RDF is built upon

‣ Massively interlinked

http://en.wikipedia.org/wiki/Product_lifecycle_management�

Rationale

‣ PLM system is “closed”
– No web services / API
– Weekly reports with flattened data (CSV)
– Changes sent as incremental messages over ESB (ASCII/CSV/XML)

‣ Need to migrate from a legacy ASCII message to new XML message
– Flat message
– Implicit links

‣ We need more data, but didn’t know exactly what
– Wanted to be able to flexibly query the data leveraging the conceptual

structure NOT the explicit structure in a particular serialization

‣ Point-to-point integration does not make sense
– Specific mappings would have to be defined in the channel
– Not robust and more effort to maintain

Why use Linked Data

‣ Consensus that a canonical model is a long term goal

‣ Challenge to define RDB and XML schema
– Many classes
– Reuse of properties across classes
– Heterogeneous data

‣ Prototype with querying XML message using XSLT, XPath
– Over 1 minute to build explicit tree structure from single ‘root’ item
– A single message can contain over 1000 root items
– Does not allow to traverse links in reverse direction

‣ Prototype with generating RDF (Turtle) and query with SPARQL
– 200 ms to convert message AND run query (Jena in memory)
– Using arbitrary length property paths

Modeling as RDF

‣ Bottom-up approach

‣ Model is already defined in source system

‣ Start with the instance data

‣ Data first, model later
– RDF Schema is used to describe the data, not constrain
– We didn’t even get round to making the RDF Schema yet!

Mapping to RDF (1)

‣ Map class and property names converted to CamelCase in URIs

‣ Follow convention that classes start with initial caps, properties
lowercase

‣ For instances we combine the class name and key id to build URI
– http://example.com/id/{class}/{id}
Result
– http://example.com/id/salesItem/1234567890

‣ Guarantees uniqueness

Name Slug CURIE
Sales Item SalesItem plm:SalesItem
CEPT Cept plm:Cept
Orderable Part Number orderablePartNumber plm:orderablePartNumber
Status status plm:status

Mapping to RDF (2)

‣ Values do not have a datatype in the source XML

‣ By default map values to plain literals

‣ Specific match (regex) for timestamps and map to xsd:dateTime

‣ Could be extended in future

‣ Qualified links get reified

Example item description

Visualization created with W3C RDF Validator (http://www.w3.org/RDF/Validator/)

http://www.w3.org/RDF/Validator/�

Data management

‣ PLM system distributes Δ updates via XML messages over ESB

‣ A single message contains description of multiple items

‣ Messages can contain overlapping content

‣ Simplest approach is “Graph Per Resource” data management pattern
– http://patterns.dataincubator.org/book/graph-per-resource.html

‣ Enables HTTP operations (GET, PUT) to manipulate individual
resource descriptions

http://patterns.dataincubator.org/book/graph-per-resource.html�

Apply changes to RDF graph store using
Quads and HTTP PATCH
‣ We define HTTP PATCH using Quad data as equivalent to:

– DROP SILENT operation on each named graph in payload, followed by
– INSERT DATA operation on each named graph in payload

‣ Enables update of multiple resource descriptions (named graphs) in a
single ACID transaction (i.e. HTTP request)

– Same granularity as original message
– No ambiguity about state of store, change is never partially applied

‣ Operation is carried out against the graph store service endpoint
– Same endpoint as used with SPARQL 1.1 Graph Store HTTP Protocol
– No graph or default parameter is passed with request
– Content-Type header used to specify MIME type of the Quads format

• application/n-quads
• application/trix
• application/trig

– Quad data passed as message payload

ETL pipeline

‣ PLM system distributes XML messages over ESB

‣ Generic XSLT transformation to TriX

‣ Load TriX to graph store using HTTP PATCH method

‣ Typically 3-4 seconds to transform and load a message

0

20

40

60

80

100

120

140

160

180

200

1/2/2014 1/9/2014 1/16/2014 1/23/2014 1/30/2014 2/6/2014 2/13/2014 2/20/2014 2/27/2014 3/6/2014 3/13/2014 3/20/2014 3/27/2014 4/3/2014 4/10/2014

Messages per day

Facts and figures

‣ ~14M triples in dataset

‣ Describing ~0.5M items

‣ ~1.7M links between items

Per day Typical Max
Messages 60 185
Changed items 530 5,300
Sent items 14,000 77,000
Triples loaded 500,000 2,685,554

Publish as Linked Data

‣ Used Linked Data API to make data browseable as HTML

‣ Also provides simple API for XML, JSON and CSV

https://code.google.com/p/puelia-php/

https://code.google.com/p/puelia-php/�
https://code.google.com/p/puelia-php/�
https://code.google.com/p/puelia-php/�

LINK
MANAGEMENT

Building a Linked Data application

Souce: https://www.flickr.com/photos/mollystevens/3390423601 CC-BY-SA

NXP Product Tree

‣ Part of main site navigation on NXP.com
– “Marketing” view on NXP product catalog

‣ Not a strict tree structure

‣ Since October 2013 is managed as SKOS concept scheme using
SKOSjs

https://github.com/tkurz/skosjs

https://github.com/tkurz/skosjs�

Product placement

‣ Products need to be placed (linked) to product categories

‣ Products defined in PLM data set, categories in SKOSjs

‣ Different role and users to tree manager

‣ Decided to implement a simple application

‣ Use cases:
– Find unassigned products
– Search for products and categories
– Add links
– Remove links

Let’s Play

‣ Decided to build application using Java version of Play
Framework

‣ Approx 4-6 weeks to develop and test

‣ Application makes queries against graph store direct from
client browser

– Using SPARQL 1.1 Federated Query
– Originally by populating pre-defined SPARQL templates and

executing these against SPARQL endpoint
– Now queries are stored in database and exposed as an API

• Initial variable bindings can be passed as request parameters

‣ Results are in SPARQL Query Results JSON Format

SPARQL Query Results JSON Format

‣ Simple tabular results format for SELECT and ASK queries

‣ Content-Type: application/sparql-results+json

‣ Example response
{
 "head": {
 "vars": ["btn", "desc", "csi", "psi", "status", "statusDate"]
 },
 "results": {
 "bindings": [
 {
 "btn": { "type": "literal", "value": “BZL3615AHN" },
 "csi": { "type": "literal", "value": "No" },
 "psi": { "type": "literal", "value": "No" },
 "status": { "type": "literal", "value": "Development" },
 "statusDate": {
 "type": "literal",
 "value": "2014-02-03",
 "datatype": "http://www.w3.org/2001/XMLSchema#date"
 }
 },
 ... more bindings ...
]
 }
}

Example 1: Get unassigned products

‣ SELECT query with no initial bindings
GET /nxp/marketing-tree/pp_get_unassigned_products.srj HTTP/1.1

btn desc csi psi status statusDate

BTH3415TIO No No Development 2014-02-03

BTM4500TIO No No Development 2014-01-31

CHB3131 Yes No Development 2014-03-04

CHV7072 No No Development 2014-03-12

CHV7075 No No Development 2014-03-12

CHV8I1 No No Qualification 2014-01-23

CHV8M1 No No Qualification 2014-01-23

CHV8O1 No No Qualification 2014-01-23

CMD8H21MT-160B No No Development 2014-04-07

CMG6H22MT-180Q No No Production 2014-03-20

Example 2: Get products filtered

‣ SELECT query with a single binding for search string

‣ Initial bindings passed as parameter $searchString

‣ Literal values enclosed in quotes "2n7002"

‣ Parameter name and value URL encoded
GET /nxp/marketing-

tree/pp_get_products_filtered.srj?&%24searchString=%222n7002ck%22
HTTP/1.1

btn desc csi psi status statusDate

2N7002CK 60 V, 0.3 A N-channel
Trench MOSFET No No Production 2011-10-28

Example 3: Link product to category

‣ INSERT query with binding for product and category

‣ Initial bindings passed as parameters $productId $categoryId

‣ Literal values enclosed in quotes "2n7002"

‣ Parameter names and values URL encoded
GET /nxp/marketing-tree/pp_link_product_to_category.srj?

%24productId=%22BFU915F%22&%24categoryId=%22208%22 HTTP/1.1

Lessons learned

‣ Building a simple Linked Data application is easy

‣ SPARQL Federation is very useful

‣ Stored queries is a good approach to expose API
– Front end developer doesn’t see SPARQL
– Works for read and write

LINKED DATA
API

Publishing Linked Data

Linked Data API (LDA)

‣ LDA defines a vocabulary and processing model for a
configurable API layer intended to support the creation of
simple RESTful APIs over RDF triple stores.

‣ The API layer is intended to be deployed as a proxy in front
of a SPARQL endpoint to support:

– Generation of documents (information resources) for the publishing
of Linked Data

– Provision of sophisticated querying and data extraction features,
without the need for end-users to write SPARQL queries

– Delivery of multiple output formats from these APIs, including a
simple serialization of RDF in JSON syntax

LDA Architecture

‣ Use W3C web standards RDF, SPARQL for portable solution

‣ Work with any RDF graph store with only minor configuration

Graph
Store

LDA

HTML

RDF/XML
Turtle

HTTP
Query and response

HTTP
Content negotiation

XML
JSON
CSV

LDA is open source

‣ Open source specification:
http://code.google.com/p/linked-data-api/

‣ Open source implementations:
– Puelia (PHP): http://code.google.com/p/puelia-php/
– Elda (Java): https://github.com/epimorphics/elda

http://code.google.com/p/linked-data-api/�
http://code.google.com/p/puelia-php/�
https://github.com/epimorphics/elda�

LDA Processing Model

‣ Identifying an Endpoint -- GET request made to a particular URI is mapped to
an Endpoint that describes further processing logic

‣ Binding Variables -- the API creates a number of variable bindings based on
the structure and parameters of the incoming request, and the Endpoint
configuration. These variables as well as the available API configuration and
request metadata describe the Context for the execution

‣ Selecting Resources -- the API identifies a sequence of items who properties
are to be returned. Usually this will be based on a Selector that describes how
to identify a single item or an ordered list of resources, in concert with the
available bindings

‣ Viewing Resources -- the API retrieves the desired properties of the identified
resource, constructing an RDF graph of the results. This process is described
by a Viewer that identifies the relevant properties of the resources

‣ Formatting Graphs -- the API identifies how to serialize the resulting RDF
graph to the client. This process is defined by a Formatter

LDA Processing Model

LDA configuration

‣ LDA config files are declarative description of the API

‣ Describes
– List and item endpoints
– Selectors
– Viewers
– Formatters

‣ Written in Turtle

‣ Read by application at run time

Thank you

	Living with Linked Data
	About NXP Semiconductors�
	About Semaku�
	Linked Data at NXP�So far, so good…
	But we want more
	Product Lifecycle Management
	What is product lifecycle management
	Rationale
	Why use Linked Data
	Modeling as RDF
	Mapping to RDF (1)
	Mapping to RDF (2)
	Example item description
	Data management
	Apply changes to RDF graph store using Quads and HTTP PATCH
	Slide Number 16
	ETL pipeline
	Facts and figures
	Publish as Linked Data
	Link management
	NXP Product Tree
	Product placement
	Let’s Play
	SPARQL Query Results JSON Format
	Example 1: Get unassigned products
	Example 2: Get products filtered
	Example 3: Link product to category
	Slide Number 28
	Lessons learned
	Linked Data API
	Linked Data API (LDA)
	LDA Architecture
	LDA is open source
	LDA Processing Model
	LDA Processing Model
	LDA configuration
	Thank you

